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Abstract. This paper compares three different types of “onset of chaos” in the logistic and generalized
logistic map: the Feigenbaum attractor at the end of the period doubling bifurcations; the tangent bi-
furcation at the border of the period three window; the transition to chaos in the generalized logistic
with inflection 1/2 (xn+1 = 1 − µx

1/2
n ), in which the main bifurcation cascade, as well as the bifurcations

generated by the periodic windows in the chaotic region, collapse in a single point. The occupation number
and the Tsallis entropy are studied. The different regimes of convergence to the attractor, starting from
two kinds of far-from-equilibrium initial conditions, are distinguished by the presence or absence of log-log
oscillations, by different power-law scalings and by a gap in the saturation levels. We show that the escort
distribution implicit in the Tsallis entropy may tune the log-log oscillations or the crossover times.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 05.45.-a Nonlinear
dynamics and nonlinear dynamical systems – 05.45.Pq Numerical simulations of chaotic systems

1 Introduction

The transition from regular to chaotic regime presents
characteristics similar to phase transitions in statisti-
cal thermodynamics and an adequate statistical thermo-
dynamical formalism has been developed for chaotic sys-
tems (see Ref. [1] for an introduction). The transition
point, or border of chaos, is characterized by a null
Lyapunov exponent. The interesting features of this tran-
sition were first illustrated by the pioneering works of
Feigenbaum on the logistic map attractor at the infinite
bifurcation point [2], immediately followed by a series of
theoretical works [3–5]. In these investigations a power-
law behavior of the sensitivity function of the logistic
map at the threshold of chaos was formulated and the
values for the power-law exponent were analytically cal-
culated. More recently Tsallis [6] introduced a formalism
of non-extensive thermodynamics that allows to pass eas-
ily from the chaotic case to the null Lyapunov exponent
case, recovering the Boltzmann Gibbs (BG) formulation
as a limit. This formalism enlightens the connections be-
tween chaos and border of chaos and, in particular, defines
a generalized entropy as the quantity of physical interest.
For example it has been shown [7] that a strong analogy
with the Pesin Identity [8] exists among this generalized
entropy and generalized polynomial sensitivity to initial
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conditions appropriate to describe the sensitivity at the
infinite bifurcations point of the logistic map [9].

Also other statistical formalisms emerging within spe-
cial relativity [10] and quantum groups [11] seem to de-
scribe well [12] the analogies between the threshold of
chaos and the fully chaotic regime, even if recently the
non-extensive formalism has been strongly criticized [13]
revealing a still open debate on the subject. At this time a
lot of experimental results (see [14] for a review) seem to
confirm at least part of the theoretical framework of the
non-extensive formalism. In this paper we performed var-
ious numerical experiments devoted to investigate the lo-
gistic map at transition points presenting different routes
to chaos. Thus our study regards different border of chaos
regimes with different attractors underlying the dynam-
ics. We present a joint analysis of (generalized, coarse
grained) entropy and occupation number. We investigate
the dynamics at large times and at large sampling ratios
and analyze border of chaos transitions different from the
Feigenbaum attractor in the logistic map. Finally we ex-
amine the presence of oscillations in the convergence to
the attractor.

2 Numerical experiments on the Feigenbaum
attractor

In this paper we describe a set of numerical experiments,
performed on the logistic map at the onset of chaos, with
the purpose of examining the dynamics of a statistical en-
semble of points, starting from far-from-equilibrium initial
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conditions. In each experiment the available phase space
is partitioned in a number Wbox of elementary, equal cells.
A set of N points is randomly selected in the phase space
according to two kinds of initial set-ups, and iterated ac-
cording to the map. In these experiments we used the
logistic map in the form

xi+1 = 1 − µx2
i ; −1 ≤ x ≤ 1 ; 0 ≤ µ ≤ 2. (1)

We investigated the parameter values µ = 2 for the
fully chaotic case, µ∞ = 1.401155189.. at the Feigen-
baum attractor, µtg = 1.75 at the tangent bifurcation and
µ1/2 = 2/

√
3 when the logistic is generalized with inflec-

tion 1/2 (xi+1 = 1−µx
1/2
i ). The first kind of initial start-

up is from concentrated initial conditions (i.c.). All the N
points are chosen, with a uniform random distribution, in-
side a single cell of the partition, itself chosen at random.
In the second kind of experiment all the N initial points
are uniformly and randomly distributed in all the available
phase space (spread i.c.). The ith cell will contain a frac-
tion Ni/N of the total number of points (

∑Wbox

i=1 Ni = N),
so that one can naively define a probability of occupation
for the ith cell through pi = Ni/N with the constraint
∑Wbox

i=1 pi = 1. On one hand we observe, for both kinds
of experiments (concentrated and spread i.c.) the occupa-
tion number in time, namely the number of non empty
cells of the partition. On the other hand, the other quan-
tity of interest in our discussion is the physical entropy,
defined as coarse-grained entropy through the probabili-
ties pi. We will use the Tsallis definition of entropy [6],
useful to characterize the behavior at the onset of chaos
where the Lyapunov exponent vanishes:

STS
q =

1 − ∑Wbox

i=1 pq
i

q − 1
. (2)

Other definitions of entropies [10–12] would also work for
the purposes of this paper. The analysis is performed
through comparisons of the various behaviors between
chaotic regime and border of chaos. We use different par-
titions Wbox and different sampling ratios r, defined as
r = N/Wbox , that gives an indication of the goodness of
sampling.

The fact that the Lyapunov exponent is zero at the
threshold of chaos, allows us to use power-laws to char-
acterize the evolution [3,4,15,16]. The comparison with
the chaotic case makes natural to pass from an “exponen-
tial formalism” to an “extended exponential formalism”
describing the power-law [7,17]. As discussed in [18], in
the Chaotic regime, the (averaged) time evolution of the
map, starting from concentrated initial conditions, may
happen in two or three stages: a first “thermalization”
stage heavily dependent on the details of the initial condi-
tions; a second “linear” stage in which the coarse grained
Boltzmann-Gibbs (BG) entropy SBG grows linearly with
time and a third “saturation” stage in which SBG reaches
its final equilibrium value.

In the fully chaotic regime, when proper average is
made on different experiments of the same kind (see

Fig. 1. (a) Time evolution of the average occupation num-
ber 〈Nocc〉 for the Logistic map at µ∞. Different curves cor-
respond to different Wbox with r = 1 (from top to bottom
Wbox = 105, 5×104, 2×104, 104). (b) Nocc vs. time from spread
initial conditions (upper curves) and 〈Nocc〉 from CIC (lower
curves). Fixed Wbox (104) and different r (from top to bottom:
r = 1000, 100, 10, 1 upper curves, r = 100, 10, 1 lower curves).
The averages are made over 5000 randomly chosen initial con-
figurations.

Ref. [19]), the evolution of the logistic map, starting from
concentrated initial conditions (CIC), exhibits an initial
exponential growth of the occupation number without a
first thermalization stage. A saturation is reached, de-
pending on the grid size, when Nocc equals the fractal
support value (Nocc = Wbox for µ = 2). The coarse
grained version of the BG entropy shows a linear initial in-
crease followed by a saturation at a SBGsat level (SBGsat �
ln(Wbox)) when starting from CIC. A Pesin-like identity
can be observed for the coarse-grained BG entropy. Us-
ing for this case a non-extensive formalism [7,12,19,20],
a linear growth of Sq in the first evolution stage can be
found and a Pesin-like identity can be recovered, if the
appropriate entropic index is selected . Thus some fea-
tures of the chaotic case can be directly transferred to
the threshold of chaos. It is important to note that in the
chaotic case the evolution happens in only two stages. In
this paper we are interested in clarify how the final satu-
ration stage is reached at the onset of chaos. To this aim
we studied the evolution at longer times than the previ-
ous works. The results are illustrated in Figures 1 and 2,
where, differently from the chaotic case, we can observe
roughly three stages. The first stage is the analogue of the
chaotic one: both 〈Nocc〉 and 〈Sq〉 increase and reach a
maximum. The duration of this first stage becomes longer
and the maximum level higher increasing Wbox , while they
do not depend on r. As previously stressed [7,12,19], in
this first “linear” stage, 〈Sq〉 grows linearly only for the
proper entropic index (q = 0.36 when µ = µ∞). In the
second stage both 〈Nocc〉 and 〈Sq〉 decrease. 〈Nocc〉 fol-
lows a power-law with superimposed log-log oscillations
which amplitude increases with r and does not depend
on Wbox . For low enough q values, 〈Sq〉 reproduces the
〈Nocc〉 behavior (when q � 0 results Sq � Nocc − 1),
but the amplitude of oscillations decreases with increas-
ing q and vanishes when q ∼ 0.36 (see Fig. 2 right frame).
In the third stage 〈Nocc〉 and 〈Sq〉 reach their (Wbox de-
pendent) saturation values and the evolution ends. Note
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Fig. 2. Logistic map at the critical point µ = 1.401155189.
Tsallis Entropy 〈Sq〉 is averaged over Nav = 5000 random
choices of an expansion experiment initial cell and is plot-
ted together its statistical error. (a) Different point ensembles
are relative to increasing Wbox values (from top to bottom
Wbox = 5 × 105, 2 × 105, 105, 5 × 104, 2 × 104, 104) while the
entropic index q = 0.36 (the value that linearize the first evolu-
tion stage) and the sampling ratio r = 1 do not vary. (b) Fixed
Wbox = 104 and r = 100, the point ensembles are relative to
different entropic indexes (from top to bottom q = 0.001, 0.1,
0.2445, 0.36, 0.7, 1).

that the saturation is reached at a level that increases
with Wbox , but 〈Nocc〉 results in a lower final value than
the fractal support, that is equal to Nocc = 244 (799) for
Wbox = 104 (105).

The log-log oscillations of Nocc have been already ob-
served in the logistic map at µ = µ∞ [21,22], perform-
ing numerical experiments starting from uniform i.c. (see
Fig. 1b). Here, for the first time, we can observe this
same behavior for 〈Nocc〉 starting from CIC (see Fig. 1b).
This kind of logarithmic oscillations, superimposed to a
power-law, characterize a large number of systems ex-
hibiting discrete scale invariance [23]. The time evolution
Nocc(t) = t−δ P (ln(t)) (where P (ln(t)) is a periodic func-
tion) can be expanded in Fourier series and, keeping only
the first term, can be written in the form:

Nocc(t) = t−δ A (1 + B cos(ω ln(t) + φ)) . (3)

As can be observed in Figure 1-b (upper curves), starting
from uniform i.c., the exponent δ increases with r (this
dependence has been stressed in [22]) and its limit value

Fig. 3. Time evolution of the Logistic map at the critical point
µ = 1.401155189, the maximum values are reached at time
n = 2k−1 (with k = 1, 2, 3, ...) and are stressed by circles, min-
imum in 2k by squares. Nocc vs. time obtained by an expansion
experiment starting from an initial condition concentrated in
the extremely right cell (centered in xc = 1−1/(2Wbox)), sam-
pling ratio r = 1, number of partition cells Wbox = 105 in (a)
and Wbox = 107 in (b).

(δ → 0.800138... for r → ∞) has been determined in [13].
We analyzed the results of our experiments from concen-
trated i.c., using for 〈Nocc〉(t) the same time dependence of
equation (3), founding the power-law exponent δ � 0.54,
but we could not establish any dependence on r. Note that
also starting from uniform i.c. the evolution can be roughly
divided into three stages: a first “crossover time” stage, in
which Nocc(t) � const.; the power-law stage, with super-
imposed log-log oscillations; the final saturation stage, in
which Nocc(t) equals the fractal support value, differently
to the CIC experiments.

To investigate the origin of the observed behavior (on
average) starting from CIC, we performed others expan-
sion experiments, without averaging, selecting a special
initial cell. In Figure 3 we show the results of an expan-
sion experiment from the Wbox-th cell, that has the point
x = 1 as right extreme, where the distance of x = 1 from
the Feigenbaum attractor is infinitesimal. Again there
are three evolution stages. The first stage presents, for
both Nocc(t) and Sq, exactly the same pattern already
observed for the sensitivity function starting from x0 = 1,
characterized by large fluctuations [5]. The upper limit
values correspond to times n = 2k − 1 and form a straight
line for Nocc(t) and Sq=0.2445 as already found for the
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Fig. 4. Logistic map at the tangent point µ = µt.
Wbox = 104, averages performed using Nav=800 ran-
dom choices for the initial cell. (a) Nocc from a relaxation
experiment starting from uniform i.c. (continuous lines)
and 〈Nocc〉 obtained starting by a CIC (points), are plot-
ted together for different r values (from top to bottom
r = 1, 10, 100). (b) Tsallis entropy with index q = 3/2
is showed for different r (top to bottom r = 1, 10, 100);
the three series of points are inside their statistical errors
(not showed in figure).

Fig. 5. Evolution from spread i.c. at µ1/2 in the generalized logistic with inflection 1/2. The curves are obtained, from top to
bottom, using r = 100, 10, 1 for Wbox = 64.000 (a) and Wbox = 128.000 (b).

sensitivity function [9]. This stage is longer when Wbox

increases. In the second stage, the upper limit of the large
fluctuation pattern decreases, following approximately a
power-law with superimposed log-log oscillations. Finally
a saturation stage is reached, in which the evolution shows
a regular periodic pattern. Some features of the evolution
from this special cell remind the averaged behavior. This
is not trivial because there are single cells which exhibit
a completely different time evolution. We checked, for in-
stance, the repellor x = xr = 0.5602326... (solution of
the equation xr = 1 − µ∞x2

r). Centering the initial cell
in xr, we observed a first stage in which Nocc grows expo-
nentially and reaches its maximum at Nocc ∼ Wbox; then
it decreases following a power-law without log-log oscilla-
tions and its evolution ends at a saturation value equal to
the fractal support. Large fluctuations of Nocc and Sq do
not appear at any time.

The Feigenbaum-scaling cascade of period doubling is
not the only possible scenario. In the following we show
few comparisons with others routes to chaos. The logis-
tic map at the beginning of the period three window
(µ = µt = 7/4) exhibit both a vanishing Lyapunov expo-
nent (λ = 0) and a power-law decreasing sensitivity func-
tion (weak insensitivity). The power-law exponent and the
correspondent Sq entropic index (q = 3/2) have been ana-
lytically determined in [25]. We performed for the tangent
point µ = µt the same relaxation experiments described
in the previous part for µ = µ∞, reproducing and improv-

ing the results already obtained in [24,26]. Our results are
showed in Figure 4. As already stressed in [26], the evolu-
tion starting from CIC begins miming a chaotic behavior:
SBG grows linearly and 〈Nocc〉 exponentially; then a max-
imum is reached. Thereafter 〈Nocc〉 presents a “crossover”
stage, with 〈Nocc〉 = const. ∼ Wbox , which is longer for
larger r. This has been already analyzed in [24] for uniform
i.c. but not for CIC. In the third stage 〈Nocc〉 decreases
with a power-law and no log-log oscillations. The evolution
ends when 〈Nocc〉 reaches the three points attractor. The
curves relatives to CIC and to uniform i.c. join each other
after the first stage (Fig. 4a), differently from the µ = µ∞
case (Fig. 1b). Turning our attention to Figure 4b Sq, af-
ter the mimed “chaotic” stage, decreases and is linear only
for q = 3/2. There is no crossover time for any sampling
ratio and for q = 3/2 the slope depends on Wbox [26] but
not on r.

Finally we examined the transition to chaos in the
generalized logistic map when the inflection is 1/2. Here
the main bifurcation cascade, as well as the bifurcations
generated by the periodic windows in the chaotic region,
collapse in a single point [27]. In such a point the map
undergoes the transition to chaos and the Lyapunov ex-
ponent is zero. The experiments performed starting from
uniformly spread i.c. show again two features already en-
countered in the previous cases. There exists a “crossover
time” (Fig. 5) which is more extended for larger r. There-
after it appears a regime of convergence to the attractor
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in which Nocc follows a power-law with negative exponent
and no log-log oscillations. In the limits of our numerical
experiments such exponent depends neither on the grid
nor on the sampling ratio.

3 Conclusions

Our numerical experiments show that the long time evo-
lution on the Feigenbaum attractor from CIC happens in
three stages, instead of the two observed in the chaotic
case. The saturation is reached only after a power law
decreasing stage, with superimposed log-log oscillations,
observed for high enough r values.

We also showed that crossover-time appears in the
time evolution from uniform i.c., in all the cases exam-
ined. The crossover-time appears also in the time evolu-
tion from CIC of the logistic map for µ = µt but not for
µ = µ∞.

Observing Sq in the expansion experiments from CIC
for high enough values of the entropic index q, log-log os-
cillations (for µ = µ∞) and crossover-time (for µ = µt) do
not appear. The escort distribution, implicit in the Tsallis
entropy formulation equation (2), selects, increasing q, the
more populated regions of the phase space. Thus the two
observed behaviors probably originate from the contribu-
tion of the less populated cells.
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